

CLIENT INFORMATION

Client: Rodrigo Gonzalex Requested On: Aug 31, 2021 Phone: (619) 829-1813 Email: golans@tipatech.us Keystone Labs Newton - East 17th
600 E 17th St. S., Newton, IOWA 50208
DO NOT CALL FACILITY DIRECTLY
For lab questions contact hello@gosimplelab.com

TESTING PERFORMED

Testing Requested: Essential City Water Test

Matrix: Drinking Water
Testing / Report ID: YIEIKW

SAMPLE INFORMATION

Collection Date: Sep 7, 2021 Collected By: Rodrigo Gonzalez Received Date: Sep 10, 2021 Reported On: Sep 14, 2021 Sample Location: Kitchen Faucet

Sample Address: Patzcuaro #305, Piedras Negras, MIC,

Mexico

TESTING NOTES

There were no problems with analytical events associated with this report unless noted. Quality control data is within laboratory defined or method specified acceptance limits except where noted. If you have any questions regarding these test results, please contact hello@gosimplelab.com

SUMMARY ANALYSIS

ANALYTE	UNIT	RESULT	METHOD	EVALUATION
рН	рН	8.4	EPA 150.1	OK
Total Dissolved Solids	PPM	271	SM 2510B	
Hardness (Ca,Mg)	PPM	216.7	2340 B	
Hardness (Total)	PPM	218.14	2340 C	
Grains per gallon	Grains	12.76	Conversion	
Alkalinity (as CaCO3)	PPM	120	SM 2320 B	
Langelier Saturation Index		0.88		SOME FAINT COATING
Sodium Adsorption Ratio		13.29	Equation	

TEST RESULTS

ANALYTE	UNIT	RESULT	MDL	METHOD	EVALUATION
Aluminum	PPM	0.074	0.0384	EPA 200.7	< SLR*
Antimony	PPM	NOT DETECTED	2.0E-5	EPA 200.8	
Arsenic	PPM	NOT DETECTED	0.00012	EPA 200.8	
Barium	PPM	0.0723	2.0E-5	EPA 200.8	< MCLG*
Beryllium	PPM	NOT DETECTED	2.0E-5	EPA 200.8	

Boron	PPM	NOT DETECTED	0.0558	EPA 200.7	
Cadmium	PPM	NOT DETECTED	1.0E-5	EPA 200.8	
Calcium	PPM	55.1	0.09183	EPA 200.7	
Chloride	PPM	109	0.34038	EPA 300.0	
Chromium (Total)	PPM	NOT DETECTED	0.00014	EPA 200.8	
Cobalt	PPM	NOT DETECTED	0.00013	EPA 200.8	
Copper	PPM	NOT DETECTED	0.00012	EPA 200.8	
Fluoride	PPM	NOT DETECTED	0.02352	EPA 300.0	
Iron	PPM	NOT DETECTED	0.0466	EPA 200.7	
Lead	PPM	NOT DETECTED	1.0E-5	EPA 200.8	
Lithium	PPM	NOT DETECTED	0.01105	EPA 200.7	
Magnesium	PPM	19.2	0.05837	EPA 200.7	
Manganese	PPM	NOT DETECTED	3.0E-5	EPA 200.8	
Mercury	PPM	NOT DETECTED	0.0005	EPA 200.8	
Molybdenum	PPM	0.0046	5.0E-5	EPA 200.8	< SLR*
Nickel	PPM	NOT DETECTED	3.0E-5	EPA 200.8	
Nitrate (as N)	PPM	0.3	0.07646	EPA 300.0	< MCLG*
Phosphorous	PPM	NOT DETECTED	0.134	EPA 200.7	
Potassium	PPM	4	0.67779	EPA 200.7	
Selenium	PPM	NOT DETECTED	0.00013	EPA 200.8	
Silver	PPM	NOT DETECTED	5.0E-5	EPA 200.8	
Sodium	PPM	81	0.90289	EPA 200.7	
Strontium	PPM	1.02	0.00645	EPA 200.7	< SLR*
Sulfate	PPM	188	0.36456	EPA 300.0	< SLR*
Thallium	PPM	NOT DETECTED	1.0E-5	EPA 200.8	
Tin	PPM	NOT DETECTED	0.00035	EPA 200.8	
Titanium	PPM	NOT DETECTED	0.0011	EPA 200.7	
Uranium	PPM	NOT DETECTED	0.001	EPA 200.8	
Vanadium	PPM	NOT DETECTED	0.0004	EPA 200.8	
Zinc	PPM	NOT DETECTED	0.01782	EPA 200.7	

How To Read Your SimpleLab PDF Report

MDL: Method Detection Limit. MDL is the lowest concentration of an analyte which testing instrumentation and the analysis team is configured to measure.

- * Good news. Your result is below the EPA Maximum Contaminant Level Goal. If no MCL-G is available, then this means your result is below the SLR for this parameter.
- ** Your result is within EPA limits for public water systems (lower than MCL). However, there is room for improvement. Your result exceeds the MCL-G or SLR (as indicated).
- *** Your result is above the MCL. You should consider remediation to reduce this concentration or find another source of drinking water.

Key Terms

EPA - USA Environmental Protection Agency. Sets health safety levels for public drinking water.

MCL - Maximum Contaminant Level. EPA requires public water systems to keep contaminant levels below this concentration.

MCLG - Maximum Contaminant Level Goal. EPA water health research suggests that ideally, the contaminant's concentration should remain below this level to prevent ill health effects.
SLR - SimpleLab Recommendation. SimpleLab, Inc. regularly reviews toxicology and public health research to determine its own recommendations, especially when MCLGs are not available.